Exercise 15

Find the derivative of the function.

$$
f(t)=e^{a t} \sin b t
$$

Solution

Take the derivative using the product rule and the chain rule.

$$
\begin{aligned}
f^{\prime}(t)=\frac{d f}{d t} & =\frac{d}{d t}\left(e^{a t} \sin b t\right) \\
& =\left[\frac{d}{d t}\left(e^{a t}\right)\right] \sin b t+e^{a t}\left[\frac{d}{d t}(\sin b t)\right] \\
& =\left[e^{a t} \cdot \frac{d}{d t}(a t)\right] \sin b t+e^{a t}\left[(\cos b t) \cdot \frac{d}{d t}(b t)\right] \\
& =\left[e^{a t} \cdot(a)\right] \sin b t+e^{a t}[(\cos b t) \cdot(b)] \\
& =a e^{a t} \sin b t+b e^{a t} \cos b t \\
& =(a \sin b t+b \cos b t) e^{a t}
\end{aligned}
$$

